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DATA REDUCTION
Data for presentation in tabular and plot form is calculated in the followingmanner:

Pi = head-corrected pressure as stored
Vri = intrusion volume as stored
θ = user-entered contact angle
γ = user-entered surface tension
Ws = user-entered samplemass
Wp = user-enteredmass for penetrometer
Wpsm = user-enteredmass for penetrometer + sample + mercury
Vp = user-entered volume for penetrometer
Vc = user-entered volume for capillary (stem)
Vbup = bulk volume at the filling pressure
Vbup = bulk volume at the user-entered pressure
ρHg = user-entered density for mercury

( )( )
WASHCON=Washcon constant = = 0.145038

10 µm / cm

68947.6 dynes / cm psia

4

2

For all calculations requiring interpolation between collected data points, an Akima1 ) method semi-
spline is used.

Diameter for the ith point is:

D =i
WASHCON γ(−4cos θ)

Pi

Radius for the ithpoint is:

R =i
D

2

i

Cumulative specific intrusion volume for the ithpoint is:

I =i
V

W

i

s

1 ) “A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures,” Journal
of the Association of ComputingMachinery, 17(4) 1970, 589-602.
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Mean diameter for the ithpoint is:

Dm =i
D +D

2

i i−1

Incremental specific intrusion volume for the thpoint is:

Ii = I − Ii i i−1

Incremental specific pore area for the thpoint is:

Ai =i
4 × Ii

Dm

i

i

Cumulative specific pore area for the thpoint is:

A = Ai + Ai + ... + Aii i i i

If more than 8 data points are available, differential and log differential specific intrusion volume are
calculated as follows.

Differential and log differential data are the 1st derivative of the cumulative specific intrusion volume
(all) data as a function of calculated log diameter, normalized by the diameter or log diameter
interval. This derivation is comprised of four transformations.

1. Interpolation of cumulative specific intrusion volume vs. log diameter ismade to get cumulative
specific intrusion volume corresponding to evenly spaced log diameters.

2. The uniform cumulative specific intrusion volume data are then subjected to a 1st derivative cal-
culation, using a 9-point smoothingmethod. This gives the desired differential data in terms of
uniform intervals of collected data.

3. Log differential data are normalized by dividing by the log diameter interval between points.
Since the points are evenly log spaced, this interval is the same for all points. Differential data
are normalized by dividing by the diameter interval between points. Since the points are evenly
log spaced, this interval is larger for larger diameters.

4. Interpolation of the differential or log differential data vs. log diameter ismade to get data cor-
responding to collected data points.

If 8 or fewer data points are available, differential and log differential specific intrusion volume are
calculated as:

Differential specific intrusion volume by diameter for the ith point is:

Id =i
−Ii

D −D

i

i i−1

Log differential specific intrusion volume by diameter is:
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I1d =i
−Ii

logD − logD

i

i i−1

Differential specific intrusion volume by radius for the ithpoint is:

Ir =i
−Ii

R − R

i

i i−1

Log differential specific intrusion volume by radius is:

I1r =i
−Ii

R − R

i

i i−1

Total intrusion volume is:

V = Vtot j

where the jthpoint is the first such that:

P ≤ P − 10 and P ≤ P × 0.995j+1 j j+1 j

Total specific intrusion volume is:

I =tot

V

W

tot

s

Percent of total specific intrusion volume for the ith point is:

Ip =
i

100 × I

I

i

tot

Total specific pore area is:

A = Atot j

for point j as defined above.

Median diameter by volume is:

D = Dmv k

where
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l =k
I

2

tot

and Pk is interpolated from Ik and the collected data, and Dk is calculated fromPk

Median diameter by area is:

D = Dma k

where

I =k
I

2

tot

and Pk is interpolated fromAk and the collected data, and Dk is calculated fromPk.

Average diameter is:

D =av

4 × I

A

tot

tot

BLANK CORRECTION BY FORMULA

For equilibration time 6 seconds:
( )X = log
T

6

For equilibration time < 6 seconds: X = 0.0



















A = 1.23×10 + 2.67 × 10 X − V 1.78 × 10 + 1.0 × 10 X

+ V 1.64 × 10 + 2.4 × 10

i
−7 −7

p
−7 −8

m
−7 −8

For intrusion,

B = A P + A P1 i 2 i

2

For extrusion points ≥ 1000 psia,

( )B = A P + A P + 8.85 × 10 11 i 2 i
2 −3 P

60000

i

For extrusion points < 1000 psia,

BlankCorrection by Formula
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B = A P + A P + 8.7 × 10 P1 i 2 i

2 −6

i

Blank-corrected intrusion volume for the ith point is:

V = Vr − Bi i

where

T = equilibration time in seconds

Vm

= volume of mercury in penetrometer; where, volume of mercury =

Wpsm−Ws −Wp

Ym

Pi = pressure for this data point
Vi = corrected intrusion volume

Blank correction by file is described in the AutoPore V SeriesOperator Manual (part number 962-
42800-01).

Bulk volume is: V = V − Vb p m

Bulk density is:
Y =b

W

V −V

s

bfp bup

Skeletal volume is: V = V − Vs b tot

Skeletal density is:
Y =s

W

V

s

s

Porosity% is:
P =pc

100 × V

V

tot

b

Percent capillary used is:
V =pc

100 × V

V

tot

c
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COMPUTATION ALGORITHM FOR VOLUMETRIC PRESSURE
COEFFICIENTS OF COMPRESSIBILITY
The data acquired during the AutoPore run is examined to determine that at least seven intrusion
data points having progressively ascending pressures have been designated for use in the
computation. Note that the intrusion valueswhich will initially be referred to are not specific values.
They are “total” values never having been divided by the samplematerial mass. Later, it will be
necessary to shift to specific values.

The specified blank data are examined to determine that at least seven blank intrusion data points
having progressively increasing pressures are available to use with the specified pressure
computation range. Of the seven, the pressure values of the two blank data end pointsmust fall
within 5% (either above or below) of the two end points of the samplematerial run data.

Interpolation by spline curve polynomial or other suitable technique is to be applied to the blank data
to allow computation of blank intrusion volumes at pressureswhich exactlymatch those in the
experimentally acquired data i.e., take a pressure from the acquired data, enter the interpolation
routine and find and save the blank intrusion volumewhich would correspond to that exact pressure.
Repeat this for each pressure value in the acquired data set.

Pointwise at each experimental pressure value, subtract the blank intrusion values as interpolated
above from the experimentally acquired data intrusion values to give a “blank-corrected acquired
data intrusion values set” or more simply “blank corrected data” for short.

Assume that at each experimental pressure,Pn, the corresponding blank corrected intrusion,V(Pn),
is computed using the second order polynomial expression

( )V P = V + B*P + C*Pn 0 n n
2

where

V0 = the exact volume of the samplematerial computed as the ratio of the
samplemass and the sample density supplied by the user or, alternatively,
supplied as the pre-measured sample volume by the user;

B = the linear pressure coefficient of volumetric compressibilitymust be a neg-
ative real number to avoid violation of fundamental physical laws; and

C = the quadratic pressure coefficient of volumetric compressibility.

Construct the summation of differences as follows and solve for the values of B andC which produce
the least squared error:

Computation Algorithm for Volumetric Pressure Coef-
ficients of Compressibility
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
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

∑ V P − V + B * P + C * P = minimum

n=1

N

n 0 n n
2

2
max

WhereNmax is the index of the uppermost blank corrected data point. Now it is necessary to stop
using total values and change to the use of specific values; convert the total valuesB andC to
specific values, b and c, by dividing them by the samplematerial volume.

The first and second order pressure coefficients of volumetric compressibility of mercurymust be
added to the computed first and second order coefficients yielded here. They are expressed in the
same units. The resulting values are b’ and c’. It is necessary to do this addition because the blank
corrected experimental data actually is ameasure of the samplematerial’s differential compressibility
compared to that of mercury. Onemay imagine that a repeat of the blank run could be considered as
a test of a some unit volume of mercury itself immersed in the surroundingmercury. The result
should be the same as the blank run since in reality nothing has (at least on purpose) been changed.
The blank corrected data consists of all zero volume changeswith pressure and the b and c
computed from it will likewise both be zero.

Also one should consider the situation which we have experienced wherein a less compressible
material such as stainless steel is tested. Since bothmercury and glass compressmore than does
the steel, themercury column actuallymust rise in the bore of the penetrometer as the pressure is
increased. This is interpreted as a negative intrusion volume change with pressure and leads to the
computation of values for b (positive) and cwhich are physically impossible. Only when they are
interpreted as values relative tomercury can they be valid and, by addition of mercury’s coefficients
respectively, they can be expressed as absolute values.

The values of b’ and c’ produced by this calculation will likely be in units of absolutemilliliters per
milliliter * psia and absolutemilliliters per milliliter * psia squared if internal AutoPore computations
are, as expected, performed in these units. Reporting these in alternate units of measure will be
required. Themost useful alternate units will bemilliliters per milliliter* megaPascal andmilliliters per
milliliter* kpsia and analogous second order units. Strictly speaking, convention requires that the
duplicated fundamental units of measure in the numerator and denominator be eliminated. This
results in expressing the first order coefficient asmeters squared per Newton. This choice also is
provided in spite of its less intuitive impression.

Computation Algorithm for Volumetric Pressure Coef-
ficients of Compressibility
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FRACTAL DIMENSIONS
Pore space in sedimentary rocks exhibit fractal characteristics. The fractal dimension of these
materials has been shown to be an important petrophysical parameter partly because capillary
pressure and other transport coefficients scale as power laws of fluid saturation. The scaling
exponents often relate to the fractal dimension of themedium. Angulo1 ) , et al, show that fractal
dimensions of a quantity related to pore space bulk can be determined bymercury intrusion
porosimetry.

According to percolation theory (see reference to Katz and Thompson in Permeability section of this
appendix), at some threshold pressure PT, the invading fluid first spans the entire sample, that is, the
fluid percolates for the first time. This then produces a geometrical configuration of fluid known as the
percolation backbone and pressures from the point of percolation to completion of the backbone are
in the backbone formation region. At greater pressures, filling of pore cavities behind smaller pore
throats continues but without the sudden influx of fluid as observed at the threshold pressure. The
backbone is a fractal with fractal dimension DH, but at higher pressures, the geometry of the fluid
cluster changes rapidly to another fractal with fractal dimension DV (>DH) of the supportingmedia.

MIP DATA REDUCTION

In order to calculate a fractal dimension, the threshold pressure, Pthresh, must be known. The
threshold pressure is the pressure at which the intrusion volume vs.pressure curve is steepest. This
is either a calculated value (if chosen) or the value entered on theMaterial Properties dialog if the
Use entered threshold pressure option is selected. It is the same value used in permeability
calculations.

If necessary, the value is calculated as follows. First set up an Akima spline for specific intrusion
volume (Ii) vs. pressure (Pi) for all points on the first intrusion cycle. This is used to calculate the
slope, (dI/dP)i, at each pressure. Use these values to set up another Akima spline for slopes vs.
pressures. Finally, use the second Akima spline to find the value of pressure that gives themaximum
slope. This is the threshold pressure, Pthresh. In addition, the user must specify the backbone
formation and percolation pressure ranges over which calculations are to be performed.

1 ) R.F. Angulo, V. Alvarado, and H. Gonzalez, “Fractal Dimensions fromMercury Intrusion
Capillary Tests,” II LAPEC, Caracas, March 1992.

Fractal Dimensions
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The equation that defines fractal dimension is:

( )I = α P − p
thresh

(3−D)

I = specific intrusion volume
P = pressure
Pthresh = threshold pressure
D = the fractal dimension
α = proportionality constant

This equation is transformed to the following tomake it linear in the unknown parameters.

log(I ) = (3 − D )log(P − P ) + log αthresh

D and α are calculated by least squares fit to this equation, using all collected points (Ii, Pi) where Pi
is in the user-selected range and above the threshold pressure.

MIP Data Reduction
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MATERIAL PERMEABILITY

BACKGROUND

Permeability is a basic permeablemedium property that, unlike porosity, cannot be defined apart
from fluid flow.

Permeability is the proportionality “ constant” between the fluid flow rate and an applied pressure or
potential gradient.

Hydrologists, petrologists, and other branches of geology need tomeasure the intrinsic properties of
rock and soils to both store and transmit fluid. These are porosity, permeability, the hydraulic
conductivity of Darcy’s law, and specific storage.

BASIS OF DATA REDUCTION METHOD TO BE USED

1. A.J. Katz and A.H.Thompson, Quantitative prediction of permeability in porous rock: Physical
Review, Series B, Vol. 34, pp. 8179-8191 (1986).

2. A.J. Katz and A.H. Thompson, “Prediction of Rock Electrical Conductivity FromMercury Injec-
tionMeasurements,” Journal of Geophysical Research, Vol. 92, No. B1, pp. 599-607, (1987).

3. E.J. Garboczi, “Mercury Porosimetry and Effective Networks for Permeability Calculations in
PorousMaterials,” NIST.

4. Kelli Murbach, “Permeability in Cement Impedance Spectroscopy,” CaseWestern Reserve
University.

5. P.J. Tumidajski and B. Lin, “On the Validity of the Katz-Thompson Equation for Permeabilities
in Concrete", pp. 643-647.

6. A.H. Thompson, A.J. Katz, and C.E. Krohn, “Themicrogeometry and transport properties of
sedimentary rock,” Advances in Physics, Vol. 36, No. 5, pp. 625-694 (1987).

7. A.H.Thompson, S.W. Sinton, S.L. Huff, A.J. Katz, R.A. Raschke, andG.A.Gist, “Deuterium
magnetic resonance and permeability in porousmedia,” Journal of Applied Physics, Vol. 65,
pp. 3259-3263 (1989).

Material Permeability

Calculations for the AutoPore IV
(Ver 2.x) — Oct 2016 10



THEORY

In their 1986 paper, Katz and Thompson introduced amodel for absolute permeability, the key
relationship being

k =
cι σ

σ

c

2

0

where k is absolute permeability in terms of the rock conductivity σ and a characteristic length lc. The
constant c is of the order of (1/226 = 0.00442), and σo is the conductivity of the brine in the pore
space. The characteristic length is determined experimentally from the threshold pressure in a
mercury injection experiment. The equation follows from the percolation arguments of Ambegaokar,
Halperin, and Langer (1971) and pertaining specifically to electron transport in amorphous
semiconductors, but which are generally applicable to systems characterized by a broad distribution
of conductances.

DATA REDUCTION

In order to calculate the permeability, the characteristic length, lc, must be determined. This is
determined from the threshold pressure, Pthresh, using theWashburn equation. The threshold
pressure is the pressure at which the intrusion volume vs. pressure curve is steepest. This is either a
calculated value (if chosen) or the value entered on theMaterial Properties window (see Fractal
Dimensions on page 8). The specific volume intruded at pores larger than lc, Ithresh , is also used.
This is calculated by interpolating the specific intrusion volume vs. pore diameter curve at the
characteristic length lc.

If a conductivity formation factor (σ/σ0) is entered, the permeability is calculated using the Katz
Thompson expression above in which c is a user-entered permeability constant.

If the conductivity formation factor is not entered, calculations proceed using the length at which the
conductance ismaximum, Lmax. The conductance ismaximumwhen (I-Ithresh)D

3 is maximum,
where I is specific intrusion volume and D is diameter. To find the diameter at which this is the case,
an Akima spline is created for (Ii > Ithresh). The spline is used to find the value of the diameter, Lmax ,
at which this curve ismaximized (not necessarily a node point). From this, the fractional volume
SLmax of connected pore space involving pore widths of size Lmax and larger, can be calculated by
interpolating the specific intrusion volume vs. pore size curve to Lmax and dividing by the total specific
intrusion volume Itot. With this in hand, the permeability can be calculated as:

 






k = L • 1 • Y • S
1

89 max

L

1
tot b Lmax2

max

c

Theory
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THE KATZ-THOMPSON METHOD OF DATA REDUCTION USING MERCURY
POROSIMETRY
In order to calculate the permeability, the characteristic length, Lchar, must be determined. This is
determined from the threshold pressure, Pthresh, using theWashburn equation. The threshold
pressure is the pressure at which the intrusion volume vs. pressure curve is steepest. This is either a
calculated value (if chosen) or the value entered on theMaterial Properties window (see Fractal
Dimensions on page 8). The specific volume intruded at pores larger than Lchar, Ithresh , is also
used. This is calculated by interpolating the specific intrusion volume vs. pore diameter curve at
Lchar.

If a conductivity formation factor (s/so), is entered, the permeability is calculated as:

Perm = CL2charσ/σo
C = user-entered permeability constant
σ/σo = user-entered conductivity formation factor

If the conductivity formation factor was not entered, calculations proceed using the length at which
the conductance ismaximum, Lmax. The conductance ismaximumwhen (I-Ithresh)D

3 is maximum,
where I is specific intrusion volume and D is diameter. To find the diameter at which this is the case,
an Akima spline is set up for (Ii > Ithresh). The spline is then used to find the value of the diameter,
Lmax , at which this curve ismaximized (not necessarily a node point). From this, the fractional
volume of connected pore space involving pore widths of size Lmax and larger, SLmax, can be
calculated by interpolating the specific intrusion volume vs. pore size curve to Lmax and dividing by
the total specific intrusion volume Itot.

With this in hand, the permeability and conductivity formation factor can be calculated as:

⋅ ⋅ ⋅Perm = L I Y S
1

89
max

2 L

L
tot b Lmax

max

char

where

C = user-entered permeability constant
Yb bulk density, either calculated (if chosen) or user-entered on theMaterial

Propertieswindow

The Katz-ThompsonMethod of Data Reduction UsingMer-
cury Porosimetry

Calculations for the AutoPore IV
(Ver 2.x) — Oct 2016 12



TORTUOSITY
The terms tortuosity and tortuosity factor are often used interchangeably. Tortuosity is the ratio of
actual distance traveled between two points to theminimumdistance between two points.

ξ = tortuosity = =
Actual distance traveled

shortest distance

ℓ

ℓ

e (1)

Required parameters (units specified asmass, volume, length, and area):

ρ = density (mass/volume) – from pycnometry
Vtot = total pore volume (volume/mass)
K = permeability (area)

CALCULATING TORTUOSITY

The tortuosity can be calculated from the following expression:

∫ξ = η f (η )dη
ρ

24K(1 + ρV )

2

v
tot

η= r
c, min

η= r
c, max (2)

where

∫
( )− (r ) = , from MIP

v c
dV r

dr
c

c

(3)

In order to calculate the tortuosity, the weighted average pore size, Davg, must be found. This is
accomplished as:







D = Y = 1 O + I D + I OΣavg
2

s
1

2 1 i
2

i i
2 1

2 n n
2

Tortuosity
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Ys = skeletal or true density, either calculated (if chosen) or user-entered on the
Material Propertieswindow

Di = pore diameter for the ith point
Ii = specific intrusion volume for the ith point

Given this value, the tortuosity is calculated as:

⋅
ξ =

D

4 24Perm(1 − YI )

avg
2

tot

where

Perm = C L2 char s/so
Itot = total specific intrusion volume

CALCULATING TORTUOSITY FACTOR

Tortuosity factor is commonly used in the area of heterogeneous catalysis and is the ratio of
tortuosity to constriction.

τ =
D

Dθ

eff

c

(4)

τ =
ξ

σ

(5)

β = , area ratio
A

B

2

2

σ = f (β ), constriction factor

Carniglia has derived a simple expression for calculating the Tortuosity Factor of porousmedia.
While this expression was derived using Fick’s first law of diffusion and is convenient to calculate, the
use of this correlation is severely limited by the data required to calculate the tortuosity factor.

Calculating Tortuosity Factor
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Vtot = total pore volume
ρb = bulk density
S = total BET surface area
ΔVi = change in pore volumewithin a pore size interval
di = average diameter within a pore size interval

For non-intersecting cylindrical pores the following simple correlationmay be used:

τ = 2.23 − 1.13V ρtot b

where

0.05 ≤ V ρ ≤ 0.95tot b

This correlation is limited to values of τ ranging from 1 to 2.2.

A generalized correlation has also been developed, however the generalizedmethod requires
diffusivity data for the system and conditions of interest (temperature and pressure). It is worth noting
that if this diffusivity data is available, tortuosity factor can be calculated directly from equation 4.

    

















τ = 2.23 − 1.3V ρ 0.92 Σtot b

4

S

V

d

1+ϵ

i

i

▵

where

ε = pore shape exponent, Carniglia has assigned a value of 1 for cylinders.

The tortuosity factor is calculated as:

 










TF = 0.92 Σ
ι

D

4

S

i

i

▵

ΔIi = difference in specific intrusion volume for two adjacent points Ii - Ii-1
D = average pore size for the interval between adjacent points 0.5 (Di + Di-1)

S = user-entered BET surface area
Ii = specific intrusion volume for the ith point
Di = pore diameter for the ith point
Itot = total specific intrusion volume
Yb = envelope density, either calculated (if chosen) or user-entered on theMater-

ial Propertieswindow

Calculating Tortuosity Factor
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PORE SURFACE AREA COMPUTATION
It is sometimes asserted that pore wall surface area computed on the basis of the work required to
immerse a surface inmercury is superior to assuming the pores are cylindrical and calculating area
from geometric relationships. What those whomake the assertion fail to recognize is that
mathematically and in practice, the two computations are identical as shown below.

WORK

The reversible work dW required to immerse an area dA of a non-wetting object in mercury1 ) is

dW = γcos dAΘ (1)

where γ is the surface tension of mercury and θ its contact angle with the object. In the case of
mercury and pores, this work is supplied when the external pressureP forces a volume of mercury
dV into pores. Equation 1, therefore, becomes

γcos dA = −PdVΘ (2)

Assuming that γ and θ do not vary with pressure, equation 2 can be written

A = − ∫ PdV
γcos θ (3)

which, expressed for evaluation from pressure-volumemercury penetration data, becomes

A = −Σ
P V

γcos θ

Σ ▵
▵ (4)

1 ) Rootare, H.M. and Prenzlow, C.F., “Surface Areas fromMercury Porosimeter Measurements,”
J. Phys. Chem., 71, 2733-6 (1967).

Pore Surface Area Computation
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Pore Surface Area Computation

CYLINDRICAL GEOMETRY

The basic relationship describing the penetration of mercury into a cylindrical pore of diameterD
derived from equating the applied pressure to the resisting surface tension1 ) is

PD = −4γcos Θ (5)
The relationship amongwall area, diameter, and volume for a cylinder is

A =
4V

D
(6)

Combining equations 5 and 6, yields

A =
PV

γcosΘ (7)

which, as before, when written for evaluation from pressure-volumemercury penetration data,
becomes

A = −Σ
P V

γcos θ

Σ ▵
▵ (8)

1 ) Washburn, E.W., “Note on aMethod of Determining the Distribution of Pore Sizes in a Porous
Material,” Proc. Nat. Acad. Sci., 7, 115-6 (1921).
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